Disclosure to Promote the Right To Information

Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public.

“ज्ञान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता है”
Bhartrhari—Nitisatakam

“Knowledge is such a treasure which cannot be stolen”

“जानें का अधिकार, जीनें का अधिकार”
Mazdoor Kisan Shakti Sangathan

“The Right to Information, The Right to Live”

“पुराने को छोड़ नये के तरफ”
Jawaharlal Nehru

“Step Out From the Old to the New”

“जाने से एक नये भारत का निर्माण”
Satyanarayan Gangaram Pitroda

“Invent a New India Using Knowledge”

“इंटरनेट मानक”

“आने एक नये भारत का निर्माण”
Satyanarayan Gangaram Pitroda

“Invent a New India Using Knowledge”

“ज्ञान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता है”
Bhartrhari—Nitisatakam

“Knowledge is such a treasure which cannot be stolen”

“जाने का अधिकार, जीनें का अधिकार”
Mazdoor Kisan Shakti Sangathan

“The Right to Information, The Right to Live”

“पुराने को छोड़ नये के तरफ”
Jawaharlal Nehru

“Step Out From the Old to the New”

“इंटरनेट मानक”

“आने एक नये भारत का निर्माण”
Satyanarayan Gangaram Pitroda

“Invent a New India Using Knowledge”

“ज्ञान एक ऐसा खजाना है जो कभी चुराया नहीं जा सकता है”
Bhartrhari—Nitisatakam

“Knowledge is such a treasure which cannot be stolen”
Indian Standard
POWERED INDUSTRIAL TRUCKS AND TRACTORS — BRAKE PERFORMANCE AND COMPONENT STRENGTH
(First Revision)

ICS 53.060

© BIS 2001
BUREAU OF INDIAN STANDARDS
MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG
NEW DELHI 110002

May 2001
FOREWORD

This Indian Standard (First Revision) was adopted by the Bureau of Indian Standards, after the draft finalized by the Industrial Trucks Sectional Committee had been approved by the Transport Engineering Division Council.

This standard first published in 1980 was covering Industrial trucks having maximum capacity of 1500 kg and was based on Draft International Standard ISO/DIS 6292/1 'Powered industrial trucks — Brake performance — Part 1: High lift, low lift and non lifting' which was published as ISO 6292:1981 and subsequent revised in 1996 with the title 'Powered industrial trucks and tractors — Brake performance and component strength' to cover industrial trucks with rated capacities up to and including 5000 kg and industrial tractors of capacities up to and including 20000 N.

This standard has been revised to bring it in line with the first revision of ISO 6292:1996.

The composition of the committee responsible for formulating this standard is given in Annex A.

In reporting the results of a test or analysis made in accordance with this standard, if the final value, observed or calculated, is to be rounded off, it shall be done in accordance with IS 2:1960 'Rules for rounding off numerical values (revised)'.

Industrial Trucks Sectional Committee, TED 23
Indian Standard

POWERED INDUSTRIAL TRUCKS AND TRACTORS — BRAKE PERFORMANCE AND COMPONENT STRENGTH

(First Revision)

1 SCOPE

1.1 This standard specifies performance, test methods, controls, control forces and component strengths for brakes fitted to powered industrial trucks with rated capacities up to and including 50 000 kg and industrial tractors with rated capacities up to and including 20 000 N.

1.2 It is applicable to the following types of industrial trucks:

a) high-lift, low-lift and non-lifting powered industrial trucks with electric or internal combustion engine power and controlled by a seated or standing rider or a pedestrian;

b) stacking lift trucks with elevating operating platform; and

c) lateral-stacking trucks.

NOTE — Remote-controlled trucks will be included later.

2 DEFINITION

For the purposes of this standard, the following definition shall apply.

2.1 Braking Capacity, C_b : Ratio, Expressed as a Percentage, of Either

a) The fully developed braking deceleration, a, in metres per square second, of the industrial truck under test to the acceleration of free fall, g, in metres per square second, that is,

$$C_b = \frac{a}{g} \times 100$$

or

b) Braking force, F_b, in newtons, developed by the industrial truck under test to the gravitational force on the mass of the industrial truck under test, where m, in kilograms, equals the gross mass of the industrial truck including the rated capacity load, where applicable, that is,

$$C_b = \frac{F_b}{m \times g} \times 100$$

3 SERVICE BRAKES

3.1 General

When separate controls are provided for right- and left-hand brakes, it shall be possible to obtain combined and/or equalized operation.

NOTE — Friction-type brakes, electrical brake systems and hydrostatic transmission are among those considered to be suitable for service brakes.

3.2 Performance

Service brakes shall be capable of developing a minimum braking capacity, C_{b0}, with respect to the maximum nominal velocity, v_0, in kilometres per hour, of the truck in accordance with Table 1 and as illustrated in Fig. 1, when tested according to the conditions and procedures specified in 3.3 and 3.4. If the maximum velocity (v or v_0) is reduced automatically depending on the lift height, this reduced velocity shall be used to determine C_b for that lift height. This additional test requirement does not supplant the basic requirement for testing in the load-transporting position (see Table 1).

3.3 Test Conditions

When conducting the test, the following conditions shall apply:

a) The test road surface shall be dry, clean, smooth and level (± 0.5 percent maximum gradient), and made of concrete, asphalt or equivalent to permit the development of the drawbar drag.

b) The truck shall be laden to its rated capacity with the load in the lowered (traveling) position and the mast or forks shall be tilted fully rearward and fully retracted, if this is provided for by the design of the truck. Tractors shall be without load or trailers.

c) If the truck or tractor is fitted with a power boost system (brake servo-assistance), the system shall be operating.

d) Travel controls shall be in neutral (except in
FIG. 1 GRAPH OF BRAKING CAPACITY AGAINST TRUCK VELOCITY
the case of hydrostatic transmission braking) and the parking brakes shall be fully disengaged.

e) Burnishing of brakes is optional prior to test.

NOTES

1 Brake testing with a laden fork-lift truck may cause the steer wheel(s) to leave the ground.
2 It is recommended that the load be secured to the truck to avoid shedding under the force of braking.

3.4 Test Procedure

3.4.1 The laden truck shall be tested in both forward and reverse directions with the service brake applied using the appropriate control force not exceeding that specified in 5 and in Table 2.

3.4.2 One test procedure is to measure the drawbar drag while towing the truck at a velocity not greater than 1.6 km/h. The drawbar shall be essentially horizontal and attached to a point on the truck not higher than 900 mm above the road surface.

3.4.3 Other procedures which give equivalent accuracy may be used, such as accelerometer chassis dynamometer, or stopping distance.

4 PARKING BRAKES

4.1 Performance

4.1.1 The parking brake, without the assistance of the operator, shall be capable of holding the truck on a gradient as specified by the manufacturer, or on the following gradient, whichever is lower, in both forward and reverse directions:

- a) Stacking lift trucks with operating position elevating in association with the load-lifting device, lateral-stacking lift trucks, lift truck with both lateral and front stacking, and order-picking trucks: 5 percent
- b) Platform and stillage trucks, pallet trucks, platform-lift trucks, pallet-stacking trucks, straddle trucks, reach trucks, bi-directional lift trucks, multi-directional lift trucks, pedestrian-controlled trucks and tractors: 10 percent
- c) Any other sit-on and stand-on industrial truck or tractor: 15 percent

4.2 Test Conditions

When conducting the test, the following conditions shall apply:

- a) The test road surface shall be dry, clean, smooth and level (± 0.5 percent maximum gradient), made of concrete, asphalt or equivalent to permit the development of the drawbar drag.
- b) The industrial truck shall be laden to its rated capacity with the load in the lowered (travelling) position and the mast or forks shall be tilted fully rearward and retracted, if this is provided by the design of the truck. Tractors shall be without load or trailers.
- c) Travel controls shall be in neutral and the service brakes fully disengaged.
- d) Burnishing of brakes is optional prior to test.

4.3 Test Procedure

The laden truck shall be tested in both forward and reverse directions with the parking brake applied using the appropriate control force not exceeding that specified in 5 and in Table 2.

5 BRAKE CONTROL FORCES (See Tables 1 and 2)

5.1 For brake applied by depressing a pedal, the required service brake performance specified in Table 1 and parking brake performance specified in 4.1 shall be attained with a pedal force not greater than 600 N.

5.2 For brakes applied by an upward movement of a brake pedal (releasing the brake pedal), the required service brake performance specified in Table 1 and parking brake performance specified in 4.1 shall be attained with the pedal fully released. The force required to release the brakes and to hold the pedal fully depressed while travelling shall not be greater than 300 N.

5.3 For service brakes applied by means of a hand-lever, the required brake performance specified in Table 1 shall be attained when a force not greater than 150 N is applied to the hand-lever at the gripping point.

5.4 For parking brakes applied by means of a hand-lever, the required brake performance specified in 4.1 shall be attained when a force not greater than 500 N is applied to the hand-lever at the gripping point.

5.5 For service brakes applied by squeezing a hand-grip, the required brake performance specified in Table 1 shall be attained when a force not greater than 150 N is applied at the mid-point of the brake grip.

5.6 For brakes applied by means of a steering tongue/tiller which is biased to the upright position (as on pedestrian-controlled trucks), the required service brake performance specified in Table 1 and parking brake performance specified in 4.1 shall be attained at the...
maximum depressed stroke position of the steering tongue/tiller when a force not greater than 150 N is applied at the mid-point of the hand-grip, or upon release of the tongue/tiller or the travel control switch.

6 BRAKE COMPONENT STRENGTHS
(See Table 2)

6.1 For trucks having a downward movement of a brake pedal (depressing the brake pedal) to apply the service or parking brake(s), the system shall be capable of withstanding a brake pedal force of at least 1 200 N without failure or permanent deformation of any component.

6.2 For trucks having an upward movement of a brake pedal (releasing the brake pedal) to apply the service or parking brake(s), the system shall be capable of withstanding a force of 200 percent of the maximum possible setting of the spring which applies the brake(s), without failure or permanent deformation of any component.

In addition, the brake pedal, when fully depressed, and its associated mechanical stop shall be capable of withstanding a force of 1 800 N applied at the centre of the brake pedal actuating surface without failure or permanent deformation of any component.

6.3 For trucks having a hand-lever to apply the service brake(s), the system shall be capable of withstanding a force of at least 300 N applied at the gripping point on the lever, without failure or permanent deformation of any component.

6.4 For trucks having a hand-lever to apply the parking brake(s), the system shall be capable of withstanding a force of at least 1 000 N applied at the gripping point on the lever, without failure or permanent deformation of any component.

6.5 For trucks having a hand-grip which is squeezed to apply the service brake(s), the system shall be capable of withstanding a force of at least 300 N applied to the hand-grip, without failure or permanent deformation of any component.

6.6 For trucks having a steering tongue which is depressed or released to apply the service or parking brake(s), the system and associated mechanical stops shall be capable of withstanding a force of at least 900 N when applied at the mid-point of the hand-grip, without failure or permanent deformation of any component.

7 BRAKE OPERATING SYSTEMS

7.1 Service and Parking Brake Operating Means

7.1.1 Except for stand-on trucks and those with an operating position elevating in association with the load-handling device, both types having a braking system operated by a pedal with upward movement to apply the brakes or other automatically applied means or pedestrian-controlled trucks (sometimes with rider option), the service and parking brakes shall be operated by means of independent systems and the operation of the service braking system shall not cause the parking brake system to operate simultaneously. Both braking systems may utilize the same brakes; that is brake shoes, brake drum and related actuating items.

7.2 Air-Operated Braking Systems

7.2.1 System Recovery

7.2.1.1 If an air-operated service braking system employing stored energy is used, then, with the truck stationary, the service braking system shall have the capability of delivering 70 percent of maximum system pressure measured at the brakes when the brakes are fully applied 20 times at the rate of six applications per minute with the engine running at the optimum speed for braking energy recovery.

7.2.2 Warning Device

An air-operated service braking system employing stored energy shall be equipped with a warning device which actuates before the stored energy drops below 50 percent of the manufacturer's specified maximum operating engine level. The device shall be readily visible and/or audible to the operator, and shall provide a continuous warning. Gauges indicating pressure or vacuum do not meet these requirements.
Table 1 Service Brake Performance
(Clauses 3.2)

<table>
<thead>
<tr>
<th>Group</th>
<th>Types of Truck</th>
<th>Truck Rated Capacity</th>
<th>Minimum Braking Capacity, C_b, Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) For Truck Velocity</td>
<td></td>
<td></td>
<td>$v_i \leq 5$ km/h</td>
</tr>
<tr>
<td>A1</td>
<td><16 000 kg</td>
<td>9.3</td>
<td>1.86v_i</td>
</tr>
<tr>
<td>A2</td>
<td>All industrial trucks except B, C and D to 50 000 kg</td>
<td>7.5</td>
<td>1.49v_i</td>
</tr>
<tr>
<td>B1</td>
<td>Industrial tractors with 1 or 2 braked wheels</td>
<td>13</td>
<td>2.6v_i</td>
</tr>
<tr>
<td>B2</td>
<td>with 4 braked wheels</td>
<td>18.6</td>
<td>3.72v_i</td>
</tr>
<tr>
<td>b) For Truck Velocity</td>
<td></td>
<td></td>
<td>$v_i \leq 4$ km/h</td>
</tr>
<tr>
<td>C</td>
<td>Stacking lift trucks with operating position elevating in association with the load-lifting device, lateral-stacking lift trucks, lateral-and front-stacking lift trucks, order-picking trucks.</td>
<td>4</td>
<td>v_i</td>
</tr>
<tr>
<td>c) For Truck Velocity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Rough-terrain truck</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Brake Control Forces and Component Strengths
(Clauses 3.4.1)

<table>
<thead>
<tr>
<th>Brake Type</th>
<th>Service Brake</th>
<th>Parking Brake</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum Control Force</td>
<td>Minimum Component Strength</td>
</tr>
<tr>
<td>Depressed pedal</td>
<td>600 N</td>
<td>1 200 N</td>
</tr>
<tr>
<td>Released pedal</td>
<td>300 N</td>
<td>$2 \times$ maximum control force and 1 800 N</td>
</tr>
<tr>
<td>Hand-lever</td>
<td>150 N</td>
<td>300 N</td>
</tr>
<tr>
<td>Squeeze grip</td>
<td>150 N</td>
<td>300 N</td>
</tr>
<tr>
<td>Steering tongue</td>
<td>150 N</td>
<td>300 N</td>
</tr>
</tbody>
</table>

1) See 6.2
ANNEX A
(Foreword)

COMMITTEE COMPOSITION
Industrial Trucks Sectional Committee, TED 23

Chairman
Shri S. Raychoudhari

Members
Shri K. K. Mitra (Alternate to Shri S. Raychoudhari)
Shri D. B. Sardesai
Shri G. D. Sahai (Alternate)
Shri D. Gangopadhyay
Shri N. K. Mahawar (Alternate)
Shri H. A. Dumasia
Shri D. B. Vijayakar (Alternate)
Shri R. C. Sharma
Shri Love Dev Raj (Alternate)

Joint Director Standards

Assistant Design Engineer (Container) (Alternate)
Shri D. B. Jain
Shri S. M. Munjal (Alternate)
Shri Girish Malviya
Shri S. J. Buch (Alternate)
Shri M. E. Madhusudan
Shri K. K. Tiwari (Alternate)
Shri G. M. E. Raj
Shri S. B. Mathur (Alternate)
Shri Rakesh Chawla
Shri Dhiraj Gupta (Alternate)
Shri S. Shanker Narayan
Shri N. G. Kamat Satoskar (Alternate)

Shri A. Konar
Shri N. S. Nindi
Shri A. C. Bhattacharyya (Alternate)
Shri A. K. Haldar
Shri V. P. Sulakhi
Shri M. N. Srivastava (Alternate)

Col K. R. Singh
Col Partiban (Alternate)
Shri N. A. Kamath
Shri V. Ramadosh (Alternate)
Shri Ravi Kumar
Shri A. R. Gulati,
Director (TED)

Representing
Macneill Engineering Ltd, Calcutta

Voltas Ltd, Mumbai

Directorate General of Aeronautical Quality Assurance (DGAQA), Ministry of Defence, New Delhi

Godrej & Boyce Manufacturing Co Pvt Ltd, Mumbai

Ministry of Railways (Railway Board), New Delhi

Research, Designs & Standards Organization, Ministry of Railways, Lucknow

Directorate General of Supplies & Disposals (DGS & D), New Delhi

Jost’s Engineering Co Ltd, Mumbai

Directorate General of Technical Development (Management Support Section), New Delhi

Directorate General of Factory Advice, Mumbai

Escorts Construction & Equipment Ltd, Faridabad

Mumbai Port Trust, Mumbai

Calcutta Port Trust, Calcutta

Punjab Tractors Ltd, Chandigarh

Texmaco Ltd, Calcutta

Vehicle, Research & Development Establishment, Ministry of Defence (R&D), Ahmednagar

Ministry of Defence (DGQA)(E)/CQAE, New Delhi

Chennai Port Trust, Chennai

INDITAL, Bangalore

Director General, BIS (Ex-officio-Member)

Secretary

P. K. Sharma

Joint Director (TED), BIS
Bureau of Indian Standards

BIS is a statutory institution established under the Bureau of Indian Standards Act, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of 'BIS Catalogue' and 'Standards: Monthly Additions'.

This Indian Standard has been developed from Doc : No. TED 23 (841).

Amendments Issued Since Publication

<table>
<thead>
<tr>
<th>Amend No.</th>
<th>Date of Issue</th>
<th>Text Affected</th>
</tr>
</thead>
</table>

BUREAU OF INDIAN STANDARDS

Headquarters:
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110 002
Telephones : 323 01 31, 323 33 75, 323 94 02
Regional Offices:
Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg
NEW DELHI 110 002

Eastern : 1/14 C. I. T. Scheme VII-M, V. I. P. Road, Kankurgachi
CALCUTTA 700 054
337 84 99, 337 85 61
337 86 26, 337 91 20

Northern : SCO 335-336, Sector 34-A, CHANDIGARH 160 022

Southern : C. I. T. Campus, IV Cross Road, CHENNAI 600 113

Western : Manakalaya, E9 MIDC, Marol, Andheri (East)
MUMBAI 400 093

Branches : AHMADABAD, BANGALORE, BHOPAL, BUBANESHWAR, COIMBATORE,
FARIDABAD, GHAZIABAD, GUWAHATI, HYDERABAD, JAIPUR, KANPUR,
LUCKNOW, NAGPUR, PATNA, PUNE, RAJKOT, THIRUVANANTHAPURAM.

Printed at New India Printing Press, Khurja, India